
1 
 

PI: Joseph P. Heremans (Ohio State University) 
 

co-PI’s:  Mercouri Kanatzidis (Northwestern University) 
Guo-Quan Lu (Virginia Polytechnic Institute and State University)  

Lon Bell (BSST) 
Dmitri Kossakovski (ZTPlus) 

 
2012 DOE Annual Merit Review, Crystal City Marriott, 18 May 2012 

Report up to 16 March 2012 
 

DOE/NSF Thermoelectric Partnership  
Project SEEBECK  

Saving Energy Effectively By Engaging in Collaborative 
research and sharing Knowledge 

 This presentation does not contain any proprietary, confidential, or otherwise restricted information 

 
Project ID#: ACE068 
 



2 
 

Overview 
Timeline 

Start: January 1, 2011 
End: December 31, 2014 
Percent complete: 31% 

Budget 
Total (NSF+DOE): $1,453,532 
DOE share: 50% (unverified) 
• Funding FY13: 
OSU+subcontracts: $249,301 
NU: $128,000 
VT: $118,05614,413 

Barriers 
• Overall program barriers addressed:  
 A, B, C, D 
• Barriers specific to thermoelectric 
generators: 
   - High-ZT low-cost materials made from 
available elements 
   - Thermal management 
   -  Interface resistances 
    - Durability 
    - Metrology 

Partners 
Ohio State University (OSU, lead), 
Northwestern University (NU), Virginia 
Polytechnic Institute and State University 
(VT), ZT Plus & BSST as subcontractors 
to OSU 
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Objectives 
Project goal: Develop elements for a practical automotive exhaust waste-heat 

recovery system that meets cost and durability requirements of the industry. 
 
Project objectives 

1. Develop high-ZT low-cost materials made from available elements: 
• ZT>1.5 
• materials that are not rare or toxic (Te, Tl): PbS, Mg2Sn, ZnSb 

2. New thermal management strategy, not developed under this program, in 
use at Gentherm 

3. Minimize electrical and thermal interface resistances: 
• Compliant, to accommodate thermal expansion 
• High thermal conductance across interface 
• High electrical conductance across interface  

4. Metrology: 
• Materials characterization 
• Electrical and Thermal interface resistance measurements 
• Overall system performance measurements 

5. Durability: 
• Compatible with automotive durability requirements 

 
 



GROUP 

• PbS: the cheapest thermoelectric  
 

• Raising ZT of p-type PbS with endotaxial nanostructuring and valence-
band offset engineering using CdS and ZnS 

 
• Band alignment engineering between nanostructures and matrix is a key 

path forward to increasing ZT 
 
• High performance in nanostructured p-type PbS (ZT~1.2-1.3 at 900 K):  

 
This is a breakthrough in the performance of PbS 

Objective 1: Materials 
 

Approach 1: PbS, the cheapest thermoelectric 
(Northwestern) 



GROUP 

PbS and MS second phases: band alignment 

Calculated band gap energy levels of the metal sulfides, PbS, CdS, ZnS, CaS and SrS,  
all in the NaCl structure. All values are in eV. (courtesy of Prof. C. Wolverton) 

n-type 

p-type 

Band alignment engineering between nanostructures 



PbS+1.0 at. % Bi2S3+1.0 at. % PbCl2                    PbS + 1.0 at. % Sb2S3 + 1.0 at. % PbCl2 

TEM: nanostructured PbS 



GROUP 

P-type PbS: κlat, μn and μp 

p-type, CdS containing sample shows higher μ 

n-type, all samples show similar μ 

Similar reduce levels on lattice κ 



GROUP 

Zhao L.D. et al. JACS, 2012, in  press. 

ZT for PbS system  
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Approach 2: Resonant levels in Mg2Sn1-xSix (OSU) 
• Cheap , Environmentally friendly, & Abundantly available. 
 
•   N-type  
High ZT reported in Mg2Sn1-xSix (ZT >1) 
          - Zaitsev et al. Physical Review B 74, 045207 (2006) 
          - Q. Zhang et al. Appl. Phys. Lett. 93, 102109 (2008). 
 
• P-type 
Few studies for P-type Mg2Sn1-xSix materials have been 
reported. 
 
• Candidate dopants identified by band structure calculations 

(J. Tobola): Ag 
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Calculated Masses & Fermi surface: favorable 

 
 
 
 
0.7mo -1mo for heavy band, 
0.15mo -0.2mo  for intermediate  
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Ag, Cu, In, Zn Doped Binary Mg2Sn 
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Binary Mg2Sn has 
1. too high a thermal conductivity 
2. too low a band gap => minority 
carriers appear at 400 K and 
decrease thermopower 
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Mg2Sn1-xSix X = 0.1, 0.05, doped with Ag 
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Approach 3: ZnSb (ZTPlus, OSU) 
Cheap , Environmentally friendly, & Abundantly available. 

Peritectic 
melting 

The peritectic melting of the phase 
generates impurities and degrades 
properties.  

Usually extremely long post 
annealing times are required 
 
SPS allows rapid production of 99% 
clean ZnSb specimens (XRD).  
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Impurities appear at 10 % at. Mg substitution for Zn 
 
Bismuth substitution for antimony did not result in a single phase 
even at subsitution levels of 2% at.  

 Zn1-xMgxSb alloys (ZTPlus)  
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Can be alloyed with Mg (transport properties not yet studied) 



Transport properties of representative ZnSb sample 
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• Data obtained both at 
ZTPlus and at OSU 

 
• Glitch at 423 K 

 
• Excellent ZT 
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High Temperature XRD on ZnSb 

• Peaks position change with 
temperature (thermal expansion) 

• Abnormal jump between 398 
and 423K (more measurements 
needed) 
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Objective 3. Interfaces (Virginia Tech) 
Compliant, high electrical and thermal 

conductance 

New compliant thermoelectric device interconnects using 
nanosilver 
 
Problem addressed: interdiffusion between chalcogen 
atoms in thermoelectric material and silver in contacts 
 
Achievement this year: diffusion barrier for thermoelectric 
materials 
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Approach: 
Nanosilver interconnect packaging material 

Pb-free, high-T die-attach solution: 

Substrate

Device

Densification
by diffusion

Heat up

Cool down

Sintered 
joint

Organic
thinner

Surfactant Ag nano-
powder

Uniform 
Dispersion

Silver Paste
nanoTach®

+ +
Binder

Thinner

Surfactant

 Joint formed below 280oC; 
 Melting at 960oC;  
 Thermal conduct > 150 

W/m-K. 

Assembled TE device 



10 mm 

Ag 
Ti 

Thermoelectric 
material 

100nm 
100nm 

Schematic of Ti/Ag layer 
deposited on TE material 

TE materials with Ti/Ag 
deposited as the coating layer 

Diffusion barrier: vapor deposition of Ti/Ag 
interface layer on thermoelectric substrate 

Objective: to metallize Bi2Te3-based thermoelectric material with 
diffusion barrier layer for bonding by nanosilver paste.   

Light regions coated 
with Ti/Ag 
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Evaluation of film adhesion by scratch-test 

As-coated sample Scratched by a diamond 
scriber, then peeled by 

adhesive tape 
Enlarged view of the 

tested region 

 The fact that the coating did not come off completely with 
the tape suggests that the adhesion is reasonably strong. 

 Work is underway to quantify the adhesion strength.  

20 
 



21 
 

Objective 4. Metrology:  
thermal contact resistance measurements 

Objective: to determine the thermal property of nanosilver-bonded 
interface from bonding strength measurement.   
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 Thermal impedance 
decreases drastically 
with increasing die-
shearing strength; 
 
 

 A die-shear strength of at 
least 10 MPa is 
necessary for low 
thermal impedance.  

Thermal impedance vs. die-shear strength 

Observations: 
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Objective 5. Durability 
Ensure that this project 
incorporates automotive 

durability standards.  
 

1. Durability is built into every step of the design 
2. Thermal stability of PbS’ ZT (backup slide only) 
3. Extensive durability testing at Gentherm and ZTPlus 
 
Gentherm and ZTPlus, have state-of-the-art durability testing facilities 

used in the development of automotive products.   
 
Achievement this year:   
thermal cycling resistance of newly developed materials 
reproducibility of newly developed materials 



ZT  ~ 1.1 @ 923 K ZT  ~ 1.06 @ 923 K 

M: normal melting B: Bridgman S: SPS BN coating 

Good repeatable  

Repeatability of n-type PbS, ZT=1.1 
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50 cycles between 30 to 370 
oC: No degradation of 
properties. Improvement of 
the power factor. 
 
In-gradient testing 48 hours: 
sample chemically stable 
repeated properties 
 
 

sample 

350 
oC 

25 oC I= 70 A T-controlled Cu 
block, electrode 

T-controlled Cu 
block, electrode 

 ZnSb (ZTPlus) figure of merit, thermal stability 

THERMAL STABILITY TESTS 
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SUMMARY: FIVE objectives 

1.New Materials 
• PbS record ZT achieved; literally dirt-cheap 
• Mg2(Si, Sn): Doping studies of p-type material 
• ZnSb: excellent ZT up to 0.85, repeatable 

2. Gentherm thermal design used in prototypes (not developed under this 
program) 
3. New Interface technologies: flexible Ag nanopaste 

•  Developed diffusion barrier layer 
4. Metrology: 
•  1. Thermal contact resistance measurements, the role of die-attach 

bond strength 
5. Reliability: inherent in design 

• 1.Data on reproducibility of PbS 
• 2. Data on cyclability of ZnSb 

 
Collaboration is inherent, flow of materials from partner to partner. 

 



Technical back-up slides 
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Project Phase Years 1 – 3 
Task  Description                                                                           Time Period in years 1 2 3 
1 Optimize thermoelectric properties of PbSe 

1.1 Determine conditions for thermodynamic synthesis X 

1.2 Develop bulk nanostructuring material by liquid encapsulation for 
Sb-PbSe, Bi-PbSe, Ga-PbSe, In-PbSe, As-PbSe X X X 

1.2.1 Chemical characterization (XRD/SEM/EDX) X X X 

1.2.2 Thermoelectric characterization: measuring, analyzing X X 

1.3 Introduce resonant impurities (In, Al, Ga, Tl) X X X 

1.3.1 Chemical characterization (XRD/SEM/EDX) X 
1.3.2 Thermoelectric characterization: measuring, analyzing ← X X 

1.4 Introduce 3d,4d or 5d elements and tune ← X X 

1.4.1 Chemical characterization (XRD/SEM/EDX) ← X X 

1.4.2 Thermoelectric characterization: measuring, analyzing ← X X 

Milestones (bold = achieved, ← = pulled forward)  
Summary: record ZT’s achieved after year 1 => expand to cheaper alternative PbS 
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2 Optimize thermoelectric properties of Mg2X (Si,Sn,Pb) 

2.1 Determine conditions for thermodynamic synthesis X 

2.2 Develop bulk nanostructuring material by liquid encapsulation for 
 Mg2Si1-xSnx/Y, Mg2Si1-xPbx/Y, Mg2Sn1-xPbx/Y with Y= W,Mo, Ta, Hf, Nb X X X 

2.2.1 Chemical characterization (XRD/SEM/EDX) ← X X 

2.2.2 Thermoelectric characterization: measuring, analyzing ← X X 

2.3 Extend investigation with Y = stannides (Hf5Sn3, HfSn, La3Sn5, LaSn3, CoSn, FeSn) X 

2.3.1 Chemical characterization (XRD/SEM/EDX) X 

2.3.2 Thermoelectric characterization: measuring, analyzing 

2.4 Extend investigation with Y =  silicides (Co2Si, CoSi, CoSi2, NiSi2 (CaF2 type), FeSi, LiAlSi, 
ZrSi2, Zr2Si, Zr3Si, Hf2Si, Hf3Si2, WSi2, W5Si3, RuSi) X 

2.4.1 Chemical characterization (XRD/SEM/EDX) X 

2.4.2 Thermoelectric characterization: measuring, analyzing X 

2.5 Introduce resonant level in Mg2Pb1-xXx  X=Sb, Bi for n-types X X 

2.5.1 Chemical characterization (XRD/SEM/EDX) X 

2.5.2 Thermoelectric characterization: measuring, analyzing X X 

2.6 Introduce resonant level in Mg2Pb1-xXx  X=Ga, In for p-type or by substituting Mg by Na, Ag, X X 

2.6.1 Chemical characterization (XRD/SEM/EDX) X X 

2.6.2 Thermoelectric characterization: measuring, analyzing X X 



30 
 

3 Metallization of TE materials 
3.1 For PbSe-based material (SPS) X 
3.1.1 Develop blend of Fe/Sn or Pb chalcogenides  X 
3.1.2 Chemical characterization of intermetallics (SEM/EDX) X 
3.1.3 Co-pressed the blend with PbSe by SPS X X 

3.1.4 Chemical characterization of intermetallics (SEM/EDX) X X 

3.1.5 Optimize densification properties X X 

3.1.6 Measurement of the contact resistance X X X 

3.1.7 Durability test (thermal cycling and chock resistance) X X 

3.1.8 Explore other barriers of diffusion co-pressed by SPS ← X X 

3.2 For PbSe-based material (PVD) X 

3.2.1 Identify potential element (e.g. nitride or carbide) X 

3.2.2 Development of the sputtering process X 

3.2.3 Chemical characterization (SEM/EDX) X X 

3.2.4 Measurement of the contact resistance X X 

3.2.5 Durability test (thermal cycling and chock resistance) X X 

Milestones (bold = achieved, ← = pulled forward)  
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3 Metallization of TE materials 

3.3 Develop a process for Mg2X (SPS) X X 

3.3.1 Identify potential blend X X 

3.3.2 Co-pressed the blend with Mg2X by SPS X X 

3.3.3 Chemical characterization of intermetallics (SEM/EDX) X X 

3.3.4 Optimize densification properties X X 

3.3.5 Measurement of the contact resistance X 

3.3.6 Durability test (thermal cycling and chock resistance) X X 

3.4 Develop a process for Mg2X (PVD) X 

3.4.1 Identify potential element (e.g. nitride or carbide) X X 

3.4.2 Development of the sputtering process X 

3.4.3 Chemical characterization (SEM/EDX) X 

3.4.4 Measurement of the contact resistance X 

3.4.5 Durability test (thermal cycling and chock resistance) X 

Milestones 
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4 Device interconnection (bonding element to heat spreader) 

4.1 Chemical investigation of Ag diffusion in metallization (SEM/XPS) X 

4.1.1 Influence of the amount of Ag X 

4.1.2 Influence of coating gold on Ag joint X X 

4.1.3 Measurement of the contact resistance X X 

4.2 Study of other metals (M) ← X 

4.2.1 Chemical investigation of M diffusion in metallization (SEM/XPS) ← X 

4.2.2 Influence of the amount of M ← X 

4.2.3 Measurement of the contact resistance X X X 

Milestones (bold = achieved, ← = pulled forward)  
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5 Integration of material and interfaces into patented module 
5.1 Chemical characterization (XRD/SEM/EDX) X 

5.2 Measurement of the contact resistance X X 

5.3 Thermoelectric characterization: measuring, analyzing x 

5.4 Durability test x x x 

6 Develop new module/heat exchanger design 
6.1 Chemical characterization (XRD/SEM/EDX) X 

6.2 Thermoelectric characterization: measuring, analyzing X X 

6.3 Measurement of the contact resistance X X 

6.4 Durability test X X 

Milestones (bold = achieved, ← = pulled forward)  
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PbS with second phases without doping 

n-type PbS with second phases 

Second phases: Bi2S3, Sb2S3 

PbS: the cheapest thermoelectric 
Band alignment engineering between nanostructures and matrix is a key path forward 
to increasing ZT 
High performance in nanostructured p-type PbS (ZT~1.2-1.3 at 900 K): This is a 
breakthrough in the performance of PbS 

35 
 



Both total and lattice κ were reduced by SrS inclusions 

P-type Pb0.975Na0.025S-x%SrS  
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Pb0.975Na0.025S-3%CaS/SrS & thermal stability  
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Pb0.975Na0.025S+3%SrS shows ZT about 1.2 at 923K,  
Pb0.975Na0.025S+3%CaS shows ZT about 1.1 at 923K,  
both samples show excellent thermal stabilities after annealing treatments. 



GROUP 

Venkatasubramanian, R. et. al., Nature 413(2001)597.  

SrTe 

PbTe 

Biswas, K. et. al., Nature Chem. 3(2011)160. 

Concept adapted from PbTe work new ideas 
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